MMS/Mass Coalition Program, Nov. 4, 2008

Patients with AF: Who Should be on Warfarin?

Daniel E. Singer, MD

Massachusetts General Hospital

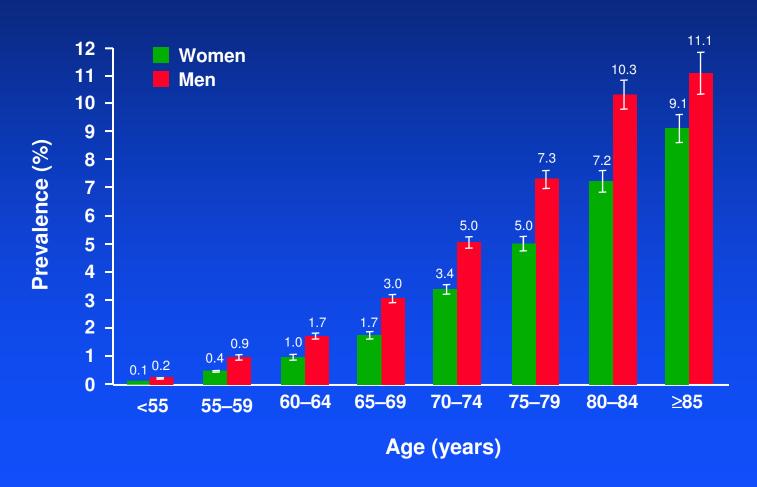
Harvard Medical School

Speaker Disclosure Information

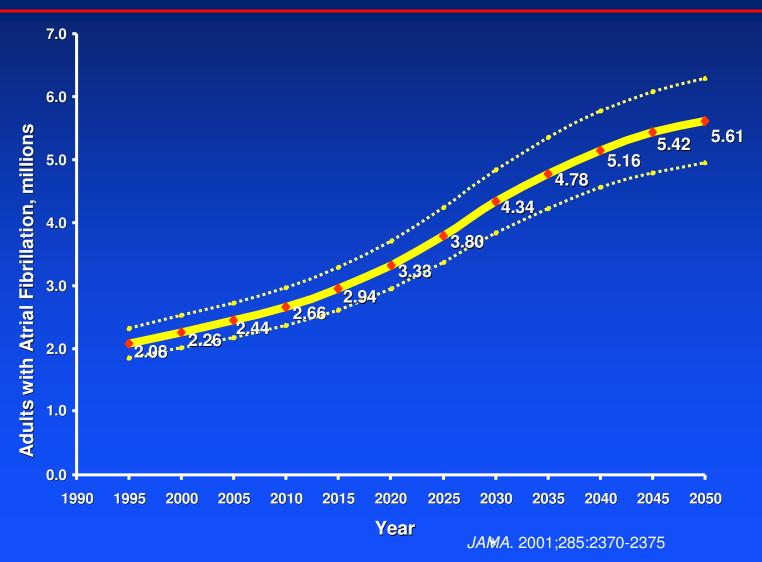
DISCLOSURE INFORMATION:

The following relationships exist related to this presentation:

Daniel E. Singer, M.D.:


Consultant: AstraZeneca, Bayer, Boehringer Ingelheim,

Daiichi Sankyo, GSK, Medtronic, and Johnson and Johnson.


Research Support: Daiichi Sankyo

Symposium Presentation: Bristol Myers Squibb, Pfizer

Prevalence of Diagnosed AF by Age and Sex

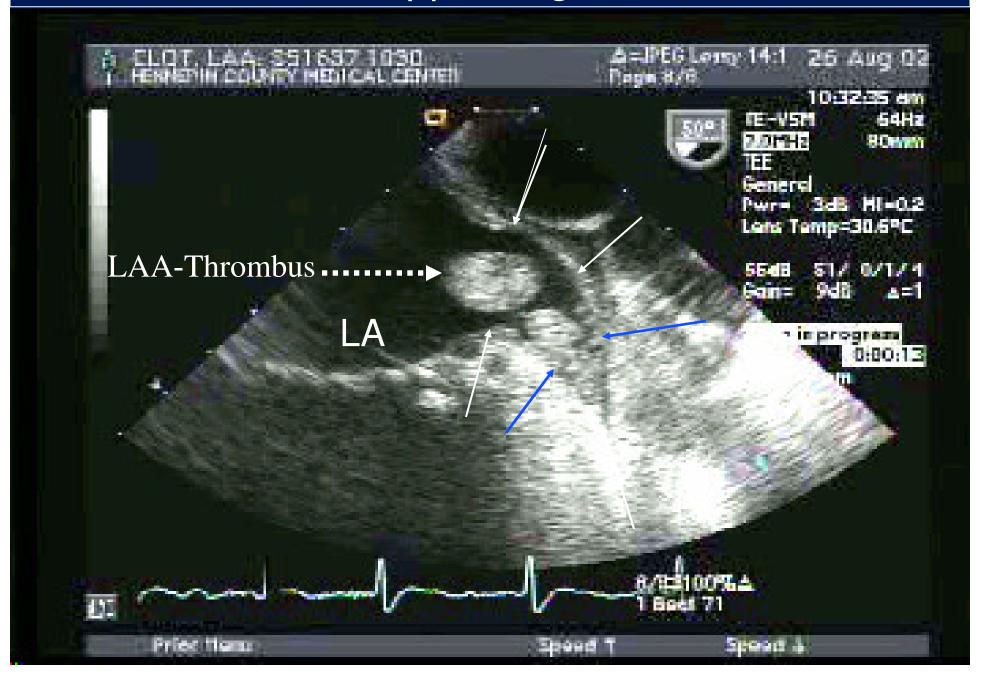
Projected Number of Adults with AF in the US, 1995-2050

AF and Stroke: Framingham Study, 30-Year Follow-up*

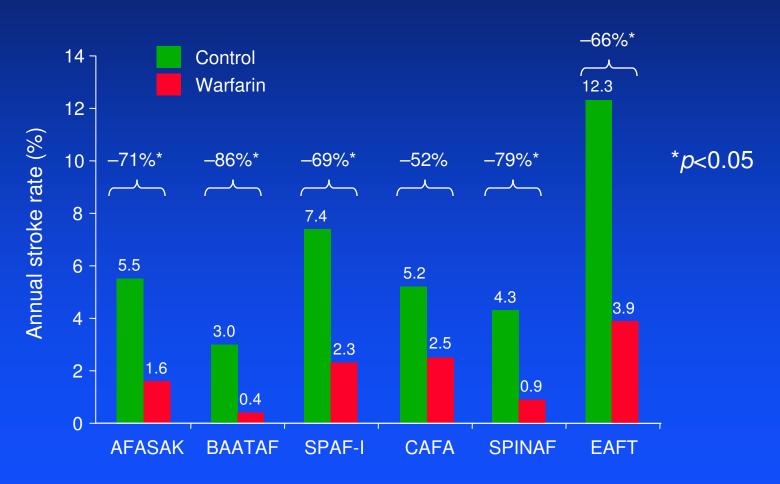
Age Relative risk for stroke:

AF vs NSR

60-69 4.7


70-79 5.4

80-89 5.0


^{*} Wolf PA, Abbott RD, Kannel WB, Arch Intern Med 1987;147: 1561-1564; adjusted for BP

AF: Putative Mechanism for Stroke

Left atrial appendage thrombus

RCTs of VKA vs Control to Prevent Stroke in AF

Efficacy of Anticoagulation for AF

Trial Target Ranges: INR ~ 1.8-4.2

Relative

Risk Reduction

Pooled 1° RCTs 68% (50-79%)

EAFT

66% (43-80%)

Absolute

Risk Reduction

3.1% per year

8.4% per year

Safety of Anticoagulation for AF

Absolute Rates of Intracranial Hemorrhage:

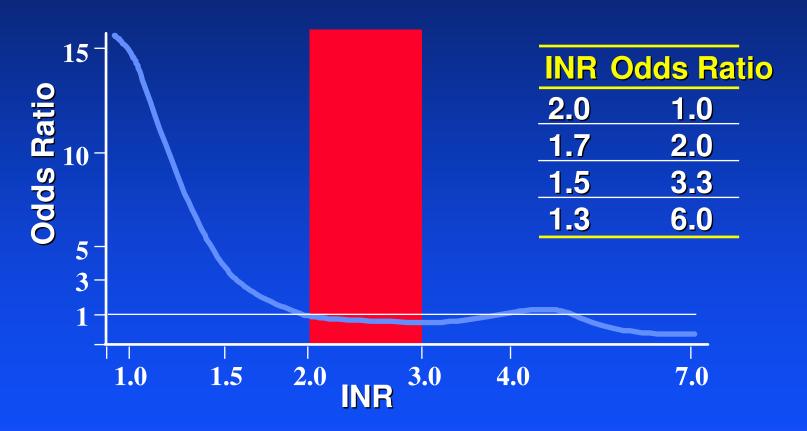
<u>Anticoagulation</u> <u>Control</u>

Pooled 1° RCTs 0.3% per yr

0.1% per yr

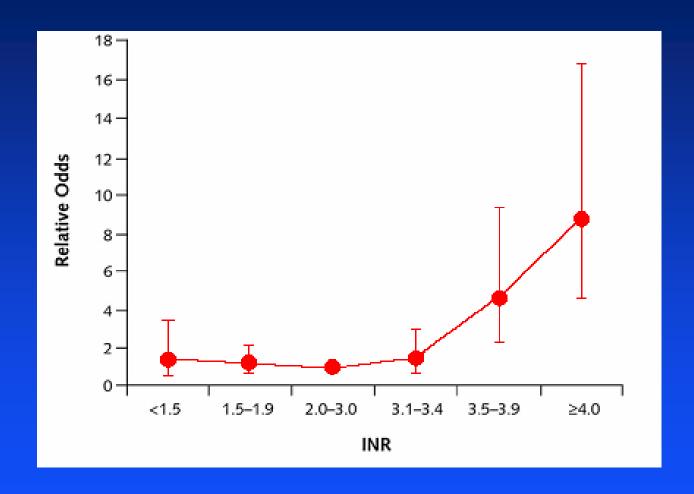
Efficacy of Aspirin for AF

Pooled 3 trials versus placebo:


AFASAK 75 mg daily SPAF I 325 mg daily EAFT 300 mg daily

Relative Risk Reduction: 21% (0-38%)
No signif impact on severe/fatal stroke

The Optimal INR


For an anticoagulant where toxicity results from an exaggeration of the beneficial effect, choosing the right "dose," here INR, is crucial.

Lowest Effective Anticoagulation Intensity for Warfarin Therapy

Hylek EM, et al. An analysis of the lowest effective intensity of prophylactic anticoagulation for patients with non-rheumatic atrial fibrillation. N Engl J Med 1996;335:540-546.

Relative Odds of ICH by INR Intervals

Antithrombotic Trials in AF: Core Findings

Anticoag. at INR 2.0-3.0 very effective

- Generally safe
- Moderately burdensome

Aspirin is much less effective

Anticoagulation for AF: For Whom?

Guideline perspective:

- Anticoagulate AF patients whose risk of stroke is high enough to "merit" the burden and hemorrhage risk of warfarin therapy
- ASA for others

Pooled Analysis of AF Trials: Risk Factors for Stroke*

	Relative Risk (RR)
Variable	Multivariate
Prior stroke/TIA	2.5
Hx HBP	1.6
Age**	1.4
Hx Diabetes	1.7

^{**}RR per decade

^{*}Arch Intern Med 1994;154:1449-1457

Echo Risk Factors for Stroke With AF: Pooled Analysis of Control Arms of 3 RCTs*

<u>Feature</u>	RR	p value
LV dysfunction		
mild	1.4	0.002
severe	2.9	< 0.001

*Arch Intern Med 1998;158:1316-1320, univariate

Risk of Stroke in AF: Impact of Paroxysmal AF

From pooled trials (~25% had PAF)

RR (PAF/Sust AF) = ~ 1.0

CHADS₂ AF Stroke Risk Score*

 $C = \underline{C}HF$ 1 point

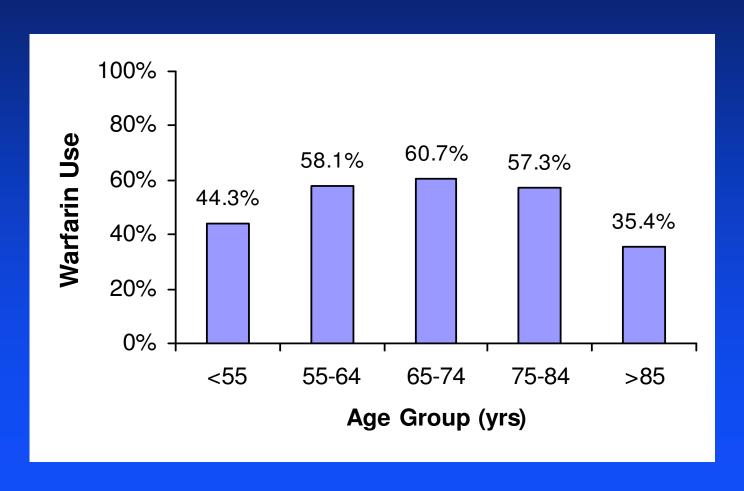
 $H = \underline{H}$ ypertension 1 point

A = Age > 75 years 1 point

 $D = \underline{D}iabetes 1 point$

S = Prior Stroke/TIA 2 points

NB: Applies to persistent or paroxysmal AF


CHADS₂ AF Stroke Risk Score

Risk of Stroke in National Registry of Atrial Fibrillation (NRAF) Participants, Stratified by CHADS₂ Score*

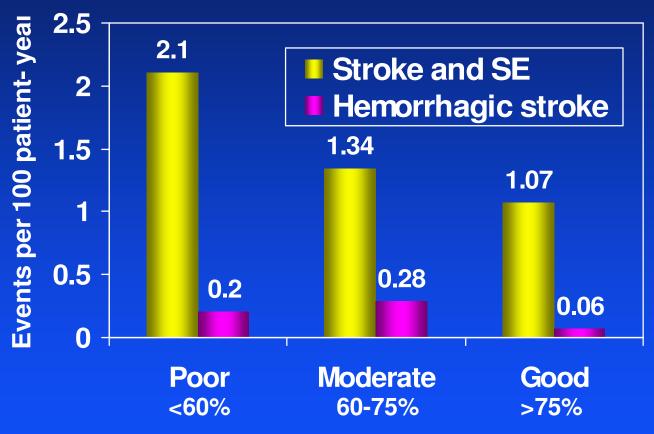
CHADS ₂ Score	No. of Patients (n = 1733)	No. of Strokes (n = 94)	Adjusted Stroke Rate, (95% CI)
0	120	2	1.9 (1.2-3.0)
1	463	17	2.8 (2.0-3.8)
2	523	23	4.0 (3.1-5.1)
3	337	25	5.9 (4.6-7.3)
4	220	19	8.5 (6.3-11.1)
5	65	6	12.5 (8.2-17.5)
6	5	2	18.2 (10.5-27.4)

What is the case's CHADS₂ score?

Prevalent warfarin use by age among ambulatory patients with no contraindications to warfarin: ATRIA Study*

BAFTA Study: Warfarin, INR 2-3 vs ASA, 75mg/d, in the Elderly with AF*

N=973, age >=75: mean age = 81.5 yrs Outcome: Disabling stroke, SE, ICH Relative risk=0.48, (95% CI 0.28-0.80)**


- Annual risk on warfarin = 1.8%
- Annual risk on aspirin = 3.8%
- Bleeding rates ~same on warfarin and aspirin in this elderly cohort.

The Importance of "TTR" in Achieving the Net Benefit of Warfarin in AF

Doing the right thing

Doing the right thing *right*

Stroke and Systemic Emboli (SE) Outcomes by INR Control Category: Results from SPORTIF III and V*

TTR = % of time spent at INR 2.0-3.0

ACCP 2008* Antithrombotic Therapy in AF:

The 2008 Guidelines

*Chest 2008;133:546S-592S

Applying a Risk-based Philosophy to Anticoagulation in AF

- Assume oral VKA has great efficacy: RRR of 67% vs no Rx; RRR of 50% vs ASA
- Absolute benefit proportional to absolute risk, untreated or treated with ASA. Evidence that untreated strokes rates are decreasing.
- At some low expected benefit, 0.5-1.0%/yr, the risk and burden of VKA are not warranted

Underlying Values and Assumptions

- Incorporate patient preferences particularly for lower risk patients
- Assume that the patient is not at high risk for bleeding and that good control of anticoagulation will occur

- 1.1.1 For patients with AF (including PAF) with any of the following:
 - Prior stroke, TIA or systemic embolism
- Recommend anticoagulation with an oral VKA target INR 2.5 (target range 2.0-3.0), (Grade 1A)

- 1.1.2 Patients with AF (including PAF) with two or more of the following:
 - Age >75 years
 - History of hypertension
 - Diabetes mellitus
 - Moderately or severely impaired LV systolic function and/or clinical heart failure
- Recommend anticoagulation with an oral VKA target INR 2.5 (target range 2.0-3.0), (Grade 1A)

- 1.1.3 Patients with AF with only one of the following (CHADS₂=1):
 - Age >75 years
 - History of hypertension
 - Diabetes mellitus
 - Moderately or severely impaired systolic function and/or clinical heart failure
- Recommend anticoagulation with an oral VKA, target INR 2.5 (target range 2.0-3.0) (Grade 1A), or with aspirin 75-325 mg/day (Grade 1B), although VKA is suggested (Grade 2A).
 - Emphasize role of informed patient.

- 1.1.4 Patients with sustained or paroxysmal AF with none of the following (CHADS₂=0):
 - Prior stroke, TIA or systemic embolism
 - Age >75 years
 - History of hypertension
 - Diabetes mellitus
 - Moderately or severely impaired systolic function and/or clinical heart failure
- Recommend long-term aspirin therapy at a dose of 75-325 mg/day, (Grade 1B)

Recommendations for AF with mitral stenosis (1.3.1) and AF with a prosthetic heart valve (1.3.2)

- 1.3.1 For patients with AF and mitral stenosis, we recommend long-term anticoagulation with an oral VKA, such as warfarin, target INR 2.5 (range 2.0-3.0) (Grade 1B)
- 1.3.2 For patients with AF and a prosthetic heart valve, we recommend long-term anticoagulation at an intensity appropriate for the specific type of prosthesis (Grade 1B)

Anticoagulation for elective cardioversion of AF ≥ 48 hours or unknown duration

- 2.1.1 For patients with AF of ≥48 hours or of unknown duration for whom pharmacologic or electrical cardioversion is planned, we recommend:
 - Anticoagulation with an oral vitamin K antagonist, target INR of 2.5 (range, 2.0-3.0)
 - For 3 weeks before elective cardioversion
 - And for at least 4 weeks after sinus rhythm has been maintained (Grade 1C)

ACCP 8: Key Points for Longterm Antithrombotic Therapy

- Age 65-75 yrs is no longer considered a risk factor
- Either VKA or aspirin is acceptable for AF patients with one stroke risk factor, other than prior ischemic stroke, although VKA is favored
- We again stress INR 2-3 as the appropriate target and do not endorse lower INR targets in elderly (e.g., ACC/AHA/ESC INR 1.6-2.5)
- We recommend broader acceptable dosing range for ASA 75-325 mg, not just 325 mg as in ACCP 7 (2004)

Stroke Prevention in AF: What's needed now?

- 1. Optimizing warfarin therapy:
 - Quality improvement for anticoagulation
 - Dedicated anticoagulation units
 - Self-testing/self-management
 - Better initiation and maintenance dosing
 - ?clinical+genotype-guided
- 2. With high quality anticoagulation assured, more patients can be safely and effectively treated.

THE END