Optimizing the Management of Warfarin Therapy

Jack Ansell, M.D. New York November 4, 2008

How could this patient have been managed better . . .

A 71 year old male was started on warfarin for an embolic CVA related to atrial fibrillation. He was discharged after being switched from heparin to warfarin with an INR of 2.1 on the day of discharge. An INR 4 days later was 2.8. His next INR was ordered for 3 weeks later; he obtained the INR in the morning and went home waiting for the call. Later that day, at home, he was found comatose. The INR pending from the morning was 14.6. The patient was found to have a massive intracranial hemorrhage and he subsequently died.

Even without knowing more information about this case, what went wrong? There are at least 2 management deficits, both of which could have been avoided.

The Dilemma of Current Oral Anticoagulant Therapy

- Warfarin has a narrow therapeutic window of effectiveness and safety
- Many factors influence a patient's ability to stay in that window (diet, meds, illnesses)
- Frequent monitoring is required to maintain patients in the therapeutic window
- Monitoring is labor intensive, complex and may lead to under use of therapy
- Warfarin has a high rate of adverse events in real world and may lead to under use of therapy

Anticoagulation Therapy Impediments to Care

Patient Related

Travel to office, lab Wait to be seen Venipunctures Reports delayed Costs

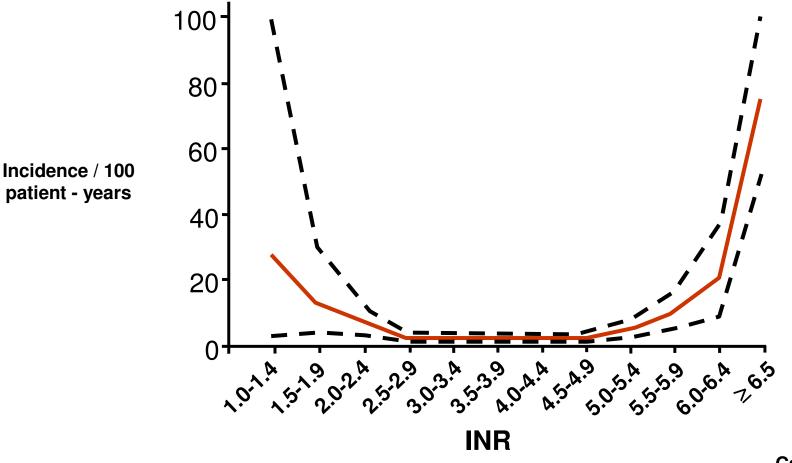
Physician Related

Scheduling tests Reports delayed Contacting Patient Reimbursement

Technology Related

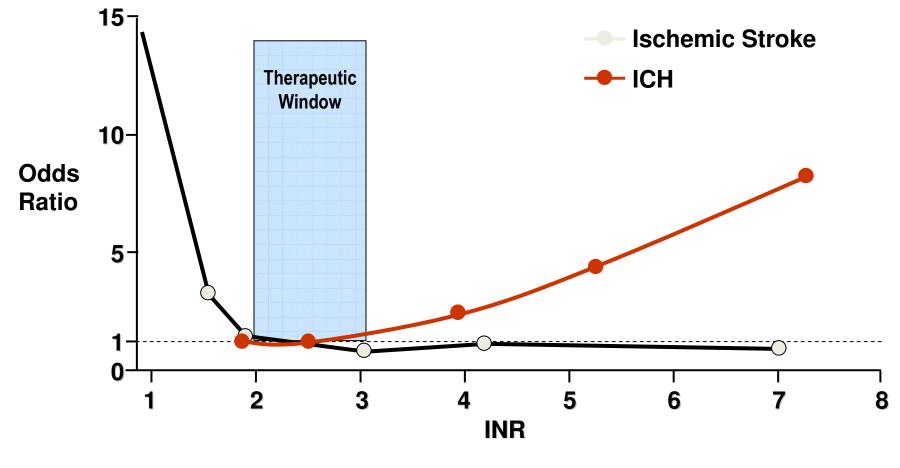
Sample handling Availability of result Accuracy, consistency

Goals of Warfarin Therapy

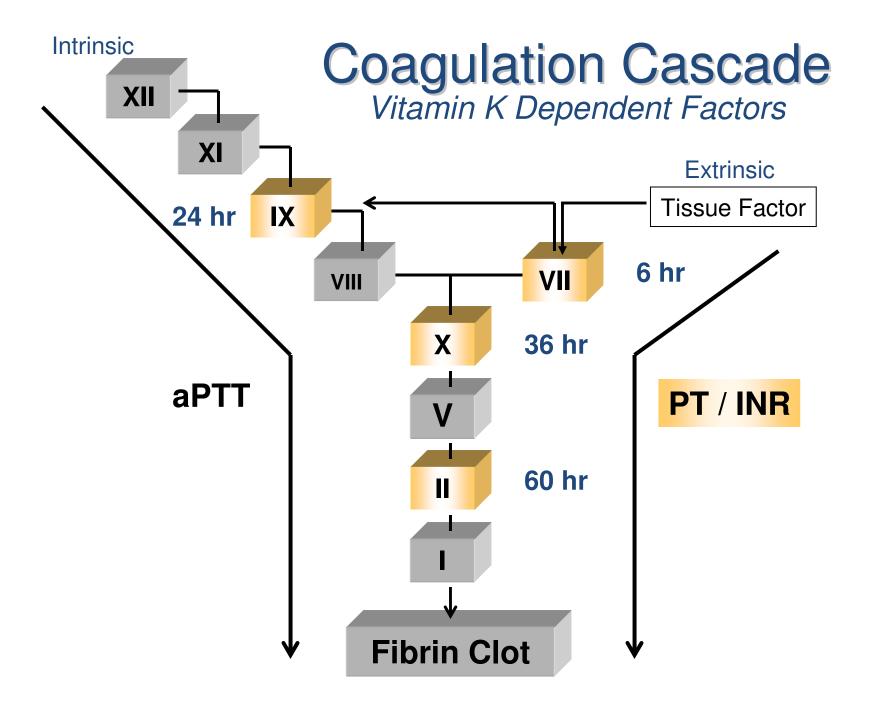

To achieve the greatest reduction in thromboembolism with the lowest incidence of bleeding.

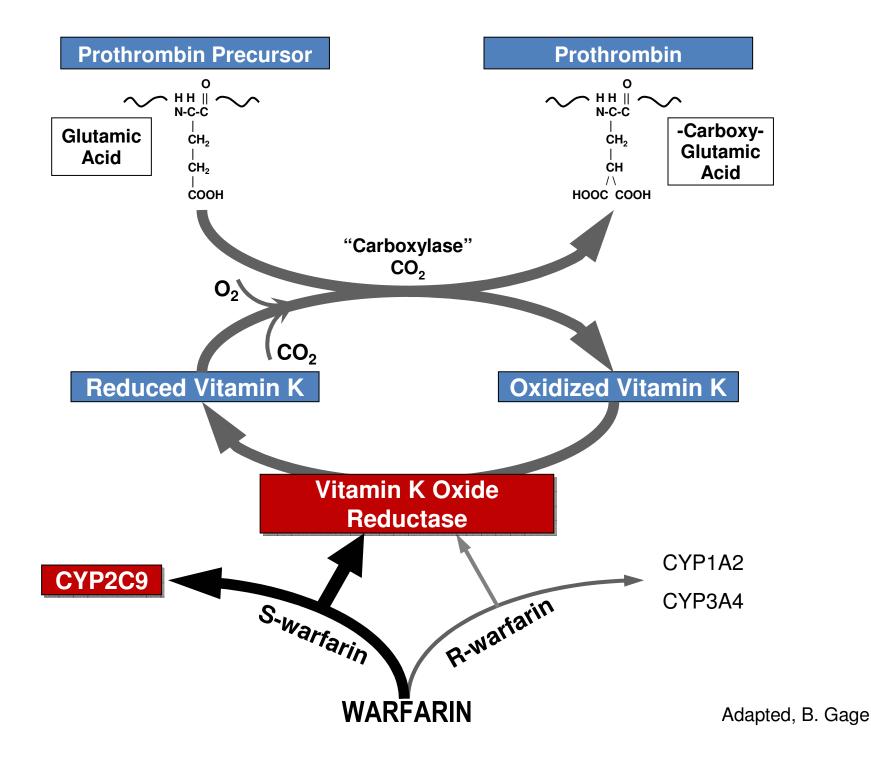
This involves knowing:

- When to use (proper indications)
- How much to use (proper therapeutic range)
- How to use


(proper dose management)

Warfarin Has a Narrow Therapeutic Window Relationship Between Clinical Events and INR Intensity in Patients with Prosthetic Valves


Cannegeiter et al


Warfarin Has a Narrow Therapeutic Window Relationship Between Clinical Events and INR Intensity in Patients with Atrial Fibrillation

1. Hylek EM et al. Ann Intern Med. 1994;120:897.

2. Hylek EM et al. N Engl J Med. 1996;335:540.

Warfarin dosing equation

Exp[0.9751-0.3238 x VKOR3673G>A + 0.4317 x BSA - 0.4008 x CYP2C9*3 - 0.00745 x Age - 0.2066 x CYP2C9*2 + 0.2029 x Target INR - 0.2538 x Amiodarone + 0.0922 x Smokes - 0.0901 x African American race + 0.0664 x DVT/PE]

The SNPs are coded 0 if absent, 1 if heterozygous, and 2 if homozygous and race is codes as 1 if African American and 0 otherwise

B. Gage. www.warfarindosing.org

Edit View Favorites Tools Help	
) Back 🔹 💿 🕤 📓 🚮 🔎 Search 🧙 Favorites 🤣 🚱 - 🌺 🔟 - 📴 鑬 🦓	
ess 🥘 http://www.warfarindosing.org/Source/InitialDose.aspx	💌 🄁 Go 🛛 Link
ogle 💽 🗸 🛛 🖸 Go 🖗 🍏 🗳 👻 🕏 Bookmarks 🗸 🔯 1 blocked 🛛 🌺 Check 👻 🐔 AutoLink 👻 🔚 AutoFill 🔒 Send to 🗸 🥔	🔘 Setting

WARFARINDOSING

www.WarfarinDosing.org

Required Patient Information
Warfarin Dosing Age: Sex: -Select- 🛛 Ethnicity: -Select- 💟
Race: -Select-
Outcomes Weight: Ibs or kgs
Hemorrhage Risk Height: (feet and inches) or (cms)
Patient Education Smokes: -Select- Liver Disease: -Select-
Indication: -Select-
Contact Us Baseline INR: Target INR:
• References CYP2C9 Genotype: -Select- Randomize & Blind
VKORC1-1639/3673 Genotype: -Select-
Glossary Amiodarone/Cordarone® Dose: mg/day
About Us
• <u>About Us</u> <u>Any azole</u> (eg. Fluconazole): -Select- 🔽
User: Sulfamethoxazole/Septra/Bactrim/Cotrim/Sulfatrim: -Select-
Patient: Version 9.3 Duild - OF New OZ
Build : 05 Nov 07 >ESTIMATE WARFARIN DOSE
ZESTIMATE WARFARIN DOSE

Models of AC Management

- Routine medical care or usual care (UC)
- Anticoagulation clinic care (ACC)
- Point-of-care (POC) testing
 - Provider testing and dosing
 - Patient self-testing (PST), but
 - Dosing by provider
 - Patient self-management (PSM), with
 - Dosing by patient

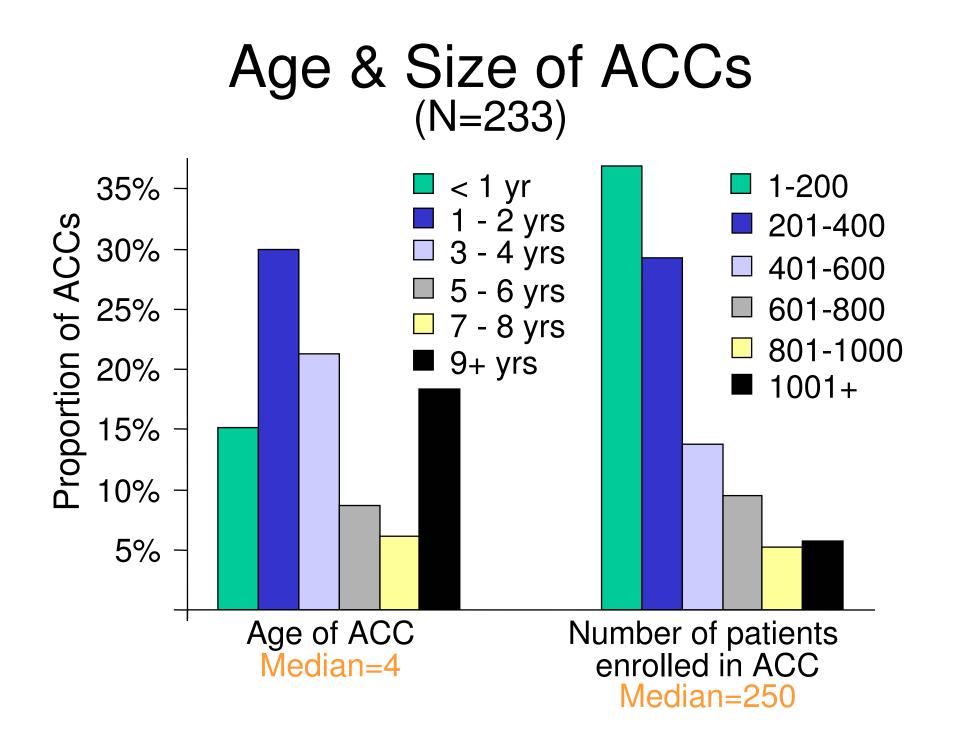
The essential elements of an anticoagulation management service

Active rather than passive dose management.

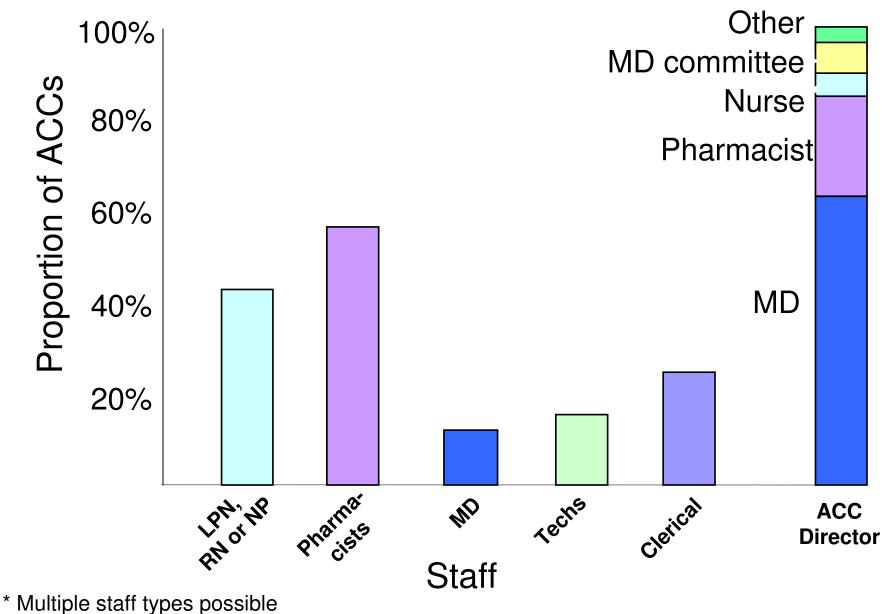
Dedicated personnel to proactively schedule, confirm, and track appointments and INR results and to maintain patient communication.

Dose manager with appropriate training or experience

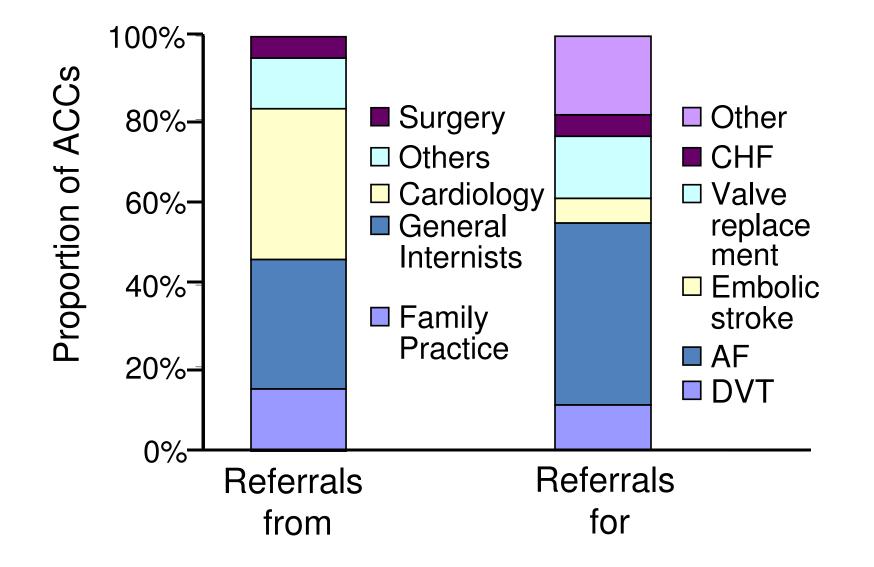
Physician, nurse practitioner, physician assistant, or pharmacist In the small physician office, this is usually the responsibility of the physician.

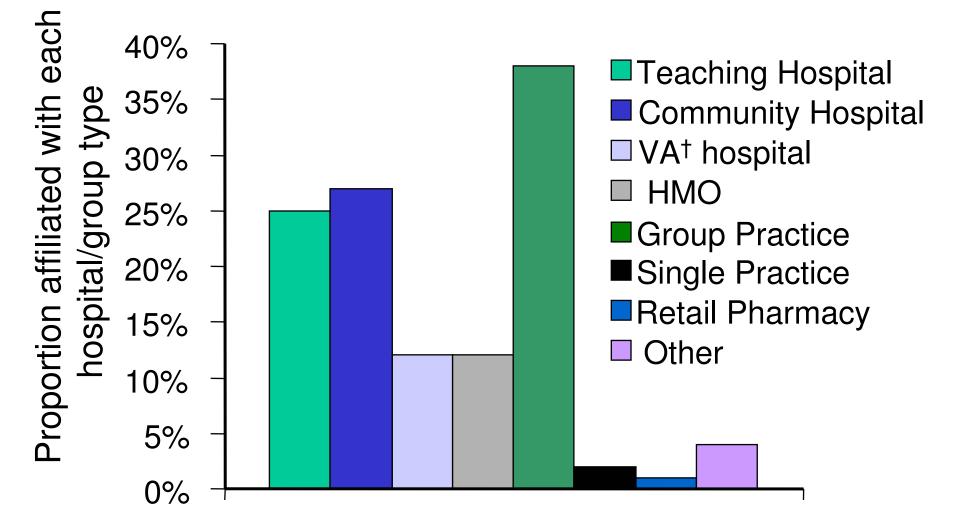

Documentation of all dosing decisions and patient interactions

Document each encounter (paper or electronically):current dose, INR, new dose, next appointment and any anticoagulation-related problems. Flow sheets to track current and previous INRs is essential.


Policies or guidelines to facilitate systematic care

Policies should include guidelines for:


AC indications; target INR and range; basic elements of patient education; initiation and maintenance dosing policy; frequency of monitoring; management of non-therapeutic INRs; management of bleeding; use of vitamin K; management of AC during invasive procedures; duration of anticoagulation; INR management responsibility when physician not available (coverage)


ACC Staffing*

Type of Referrals Received by ACCs

ACC Affiliation*

* Multiple affiliations possible. [†] Ve

[†] Veteran's Administration

TTR vs Model of AC Management

<u>Study</u>	Model of Care	<u>TTR</u>	Above <u>Range</u>	Below <u>Range</u>	
Garabedian 1985 Gottlieb 1994 Beyth 1997 Horstkotte 1998 Sawicki 1999 Holm 1999		64 50 33 59 34 63	- 30 16 - 16 8	- 20 51 - 50 29	Range 33-64% Mean 50.5%
Garabedian 1985 Conte 1986	ACC ACC	86 59	- 12	- 29	
Lundstrom 1989 White 1989 Seabrook 1990 Cannegeiter 1995 Ansell 1995	ACC ACC ACC ACC ACC	92 75 86 61 68	- 7 8 10	- 7 31 22	Range 59-92% Mean 74.4%
Palaretti 1996	ACC	68	6	26	

Author Year	Type of Patient	Indi- cation	Interven- tion	# Patient	# Pt-Yrs	Major Bleed (%)	Rec TE (%)			
UC: Retrosp	UC: Retrospective Trials									
Gitter 1995	non incept cohort	Mixed	UC	261	221	8.1	8.1			
Beyth 1998	inception cohort	Mixed	UC	264	440	5.0	NA			
Steffensen 1997	inception cohort	Mixed	UC	682	756	6.0	NA			
Willey 2004	inception cohort	VTE	UC	2,090	1,441	2.8	6.2			
Total				3,297	2,858	4.4	6.4			

AMS: Retrospective Trials								
van der Meer 1993	non incept cohort	Mixed	AMS	6,814	6,085	3.3	NA	
Cannegeiter 1995	non incept cohort	MHV	AMS	1,608	6,475	2.5	0.7	
Veeger 2005	inception cohort	VTE	AMS	2,304	1,441	2.8	6.3	
Total				10,726	14,001	2.9	1.7	

AMS: Prospective								
Palareti 1996	inception cohort	Mixed	AMS	2,745	2,011	1.4	3.5	
Abdehafiz 2004	inception cohort	AF	AMS	402	636	1.7	1.5	
Total				3,147	2,647	1.5	3.0	

Ansell et al. Chest 2008;133:160S

Author Year	Type of Patient	Indi- cation	Interven- tion	# Patient	# Pt- Yrs	Major Bleed (%)	Rec TE (%)
UC vs AMS: Re	trospective	e Trials					
	NA	MHV	UC	271	677	4.7	6.6
Cortelazzo						1	0.6
1993						p<0.01	p<0.01
	NA	MHV	AMS	271	669	0.21(0.09,0.52)	0.09(0.03,0.29)
	NA	Mixed	UC	142	102	3.9	11.8
						1.6	3.3
Chiquette 1998						p<0.5;	p<0.05;
	NA	Mixed	AMS	82	199	0.41(0.08,2.22)	0.28(0.08,0.99)
	NA	Mixed	UC	3,322	1,661	2.2	3.0
Witt 2005						2.1	1.2
						p=NS;	p<0.05;
	NA	Mixed	AMS	3,323	1,661	0.95(0.57,1.60)	0.40(0.22,0.71)

UC vs AMS: Randomized Trials									
	inception								
Matchar	cohort	AF	UC	190	NA	1.6	7.4		
2002 ⁵²	inception					1.7	5.2		
	cohort	AF	AMS	173	NA	1.10(0.22,5.37)	0.71(0.31,1.59)		
	inception								
	cohort	Mixed	UC	106	109	0.9	1.8		
Wilson 2003 ⁵³	inception					1.8	0.9		
	cohort	Mixed	AMS	112	112	1.95(0.18,21.16)	0.63(0.44,0.92)		

AC Clinics in Other Countries

<u>Country</u>	<u>Рор</u> х 10 ⁶	On <u>OAC</u> x 10 ³	In <u>ACC</u>	TTR <u>2-3</u>	Test <u>Interval</u>
Canada	32	275	5 %	62.8	24.3
England	63	750	80 %	NA	NA
France	60	600	0 %	59.3	23.6
Italy	60	650	25 %	69.5	20.0
Neth'lands	6.3	325	100 %	NA	NA
Spain	42	400	90 %	64.9	30.8
US	280	2500	25 %	58.1	25.3

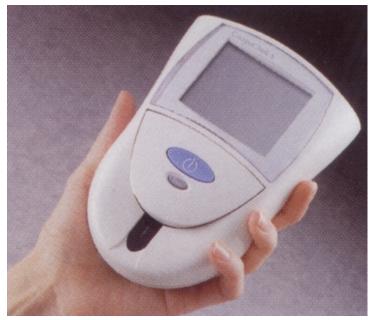
Keys to Developing an Organized Model of Anticoagulation Management

- Involving key players
- Institutional commitment
- Business plan
- Policies and procedures
- Education / certification of providers

Developing an ACC: Staffing¹

Panel	Predic		
<u>Size</u>	<u>INRs/Day</u>	<u>Hrs/Day</u>	<u>% FTE</u>
100	10	2	0.25
200	20	4	0.50
300	30	6	0.750
400	40	8	1.0

Technology Advances:


Offers a new paradigm for monitoring

- Use of capillary whole blood^{1,2}
 - Allows fingerstick sampling²
 - Appropriate for self-testing¹
- Consistency of INR results¹
- Portability¹
 - Can be done anywhere
- Simplicity¹
 - Patient can easily perform test

Time in Therapeutic Range *PSM vs UC or ACC*

<u>Study</u> Hem & TE	<u>Compara</u>	ators <u>TTR</u>	
Horstkotte	PSM vs UC 9	2 % vs 59 %	5.4% vs 14.5%
Hasenkam 1997 (RCT)	PSM vs UC 7	'7 % vs 53 %	no AEs Mean
Sawicki 1999 (RCT)	PSM vs UC 5	57 % vs 34 %	4.4% vs 6.7%
Koertke 2001 (RCT)	PSM vs UC 7	′8 % vs 61 %	2.9% vs 4.7%
Preiss 2001 (cohort)	PSM vs UC 7	′4 % vs 63 %	3.3% vs 4.7%
Ansell 1995 (case control)	PSM vs ACC 8	88 % vs 68 %	no AEs
Watzke 2000 (RCT)	PSM vs ACC 8	6 % vs 80 %	4% VS 0 Mean 72% VS 64%
Cromheecke 2000 (cross-over)	PSM vs ACC 5	5 % vs 49 %	no AEs
Gadisseur 2003 (RCT)	PSM vs ACC 7	′1 % vs <mark>68</mark> %	NA
Menendez 2005 (IRCT)	PSM vs ACC 5	9 % vs 56 %	1.6% vs 4.1%

Thromboembolism with PST or PSM

Study or sub-category	Self-management n/N	Control n/N	OR (fixed) 95% Cl	Weight %	OR (fixed) 95% Cl
01 Self-adjust* Sawicki 1999 Cromheecke 2000 Sidhu 2001 Fitzmaurice 2002 Gadisseur 2003 (a) Sunderji 2004 Menendez-Jandula 05 Voller 2005 Subtotal (95% CI) Total event: 5 (self-management), 26 (control)	0/83 0/49 1/34 0/23 0/47 0/69 4/368 0/101 774	2/82 1/49 0/48 0/26 0/110 2/70 20/369 1/101 855		3.50 2.08 0.56 3.45 27.68 2.09 39.37	0.19 (0.01-4.08) 0.33 (0.01-8.22) 4.34 (0.17-109.88) Not estimable 0.20 (0.01-4.18) 0.19 (0.06-0.57) 0.33 (0.01-8.20) 0.27 (0.12-0.59)
02 Non-adjust † White 1989 Horstkotte 1998 Beyth 2000 Kortke 2001 Gadisseur 2003 (b) Gardiner 2004 Subtotal (95% CI) Total event: 27 (self-management), 45 (control)	0/26 1/75 14/163 12/305 0/52 0/29 650	1/24 3/75 21/162 20/295 0/111 0/24 691		2·14 4·15 26·98 27·37 60·63	0.30 (0.01-7.61) 0.32 (0.03-3.19) 0.63 (0.31-1.29) 0.56 (0.27-1.17) Not estimable Not estimable 0.57 (0.35-0.93)
Total (95% CI) ‡ Total event: 32 (self-management), 71 (control)	1424	1546	•	100.00	0.45 (0.30-0.68)
)	

Favours self-manage Favours control

Heneghan et al. Lancet 2006;367:404

Major Hemorrhage with PST and PSM

Study or sub-category	Self-management n/N	Control n/N	OR (fixed) 95% Cl	Weight %	OR (fixed) 95% Cl
01 Self-adjust* Sawicki 1999 Cromheecke 2000 Sidhu 2001 Fitzmaurice 2002 Gadisseur 2003 (a) Sunderji 2004 Menendez-Jandula 05 Voller 2005 Subtotal (95% CI) Total event: 9 (self-management), 12 (control)	1/83 0/49 1/34 0/23 2/47 0/69 4/368 1/101 774	1/82 0/49 0/48 1/26 2/110 1/70 7/369 0/101 855		1.84 0.74 2.56 2.12 2.74 12.81 0.91 23.73	0.99 (0.06-16.06) Not estimable 4.34 (0.17-109.88) 0.36 (0.01-9.32) 2.40 (0.33-17.57) 0.33 (0.01-8.32) 0.57 (0.16-1.96) 3.03 (0.12-75.26) 0.93 (0.42-2.05)
O2 Non-adjust † White 1989 Beyth 2000 Kortke 2001 Gadisseur 2003 (b) Gardiner 2004 Subtotal (95% CI) Total event: 25 (self-management), 43 (control)	0/26 8/163 17/305 0/52 0/29 575	0/24 17/162 25/295 1/111 0/24 616		30·04 44·46 1·77 76·27	Not estimable 0·44 (0·18–1·05) 0·64 (0·34–1·21) 0·70 (0·03–17·51) Not estimable 0·56 (0·34–0·93)
Total (95% CI) ‡ Total event: 34 (self-management), 55 (control)	1349	1471		100.00	0.65 (0.42–0.99)
			0.1 0.2 0.5 1 2 5 1	C	
	Favours self-manage Favours control				

Benefits of POC Testing by Provider

- Simplifies anticoagulation management¹
- Immediate and accurate INR results²
- Provider communicates results and dosage adjustments directly to patient²
 - May improve patient outcomes
 - Face-to-face instruction may improve quality of care
- Improves business and office efficiency by avoiding^{2,3}
 - Venous draw
 - Proper handling of sample
 - Sending to central laboratory for testing

^{1.} Hirsh J et al. *J Am Coll Cardiol.* 2003;41:1633-1652. 2. Cheung DS et al. *Am J Geriatr Cardiol.* 2003;12:283-287. 3. Roche Diagnostics. *CoaguChek System: Why Use?* Available at: http://www.coaguchek-usa.com/information_for_professionals/why_use/sam/content.html. Accessed May 12, 2006.

Benefits of POC Patient self testing

- Allows more frequent testing
 - Longer TTR may improve patient outcomes
 - Ability to detect INR changes may allow detection prior to clinically significant event
- Enhances patient involvement in own care
- Provides consistency of instrumentation and reagents

Jacobson AK. In: Ansell JE, Oertel LB, Wittkowsky AK, eds. *Managing Oral Anticoagulation Therapy*. 2nd ed. St. Louis, Mo: Facts and Comparisons; 2003;45:1-6.

Barriers to PST/PSM

- Lack of physician awareness or acceptance^{1,2}
- Fear it will lead to unintended self-management³
- Implementation of PST/PSM³
- Reimbursement³

^{1.} Jacobson AK. In: Ansell JE, Oertel LB, Wittkowsky AK, eds. *Managing Oral Anticoagulation Therapy*. 2nd ed. St. Louis, Mo: Facts and Comparisons; 2003;45:1-6. 2. Roche Diagnostics. *CoaguChek System: Why Use?* Available at: http://www.coaguchek-usa.com/ information_for_professionals/why_use/content.html. Accessed May 12, 2006. 3. Wittkowsky AK et al. *Pharmacotherapy*. 2005;25:265-269.

Key take home points . . .

- Oral anticoagulants are labor intensive to manage
- Expert dose and patient management are key factors in success
- Specialized programs AMS or ACC have been shown to provide such expert care
- Maintaining time in range and good patient communication are key factors for success
- The key elements of such programs are adaptable to small physician offices where only a few patients are managed
- Further improvement in outcomes can be achieved by initiating POC patient self-testing or self-mangement

How could this patient have been managed better . . .

A 71 year old male was started on warfarin for an embolic CVA related to atrial fibrillation. He was discharged after being switched from heparin to warfarin with an INR of 2.1 on the day of discharge. An INR 4 days later was 2.8. His next INR was ordered for 3 weeks later; he obtained the INR in the morning and went home waiting for the call. Later that day, at home, he was found comatose. The INR pending from the morning was 14.6. The patient was found to have a massive intracranial hemorrhage and he subsequently died.

Even without knowing more information about this case, what went wrong? There are at least 2 management deficits, both of which could have been avoided.

Questions?